
121
Chapter 5

F Discovering the Possibilities FFF

 Creating Contour Plots

Basic Contour Plots
Nearly everyone is familiar with what a contour plot is from looking at top-
ographical maps. A contour plot is a way of representing a three-
dimensional surface on a flat, two-dimensional surface. The third dimen-
sion is represented by contour lines, usually drawn, at least on
topographical maps, at some equally-spaced contour interval.

Almost any two-dimensional data set can be contoured in IDL. The values
of the two-dimensional data will represent the “height” or third dimension
to be contoured. To learn how contour plots are created, we will load a
simple 2D array with the cgDemoData command, a Coyote Library rou-
tine you downloaded to use with this book. You can use the Help
command to determine that this is a 41 x 41 floating point array. The Min
and Max commands allow you to determine the array’s data range, which
in this case is 0 to 1550.

IDL> data2D = cgDemoData(2)

IDL> Help, data2D
DATA2D FLOAT = Array[41, 41]

IDL> Print, Min(data2D), Max(data2D)
0.000000 1550.00

A contour plot in its most basic form can be created just by passing this
array as the argument of the IDL traditional graphics command Contour,
like this.

IDL> Contour, data2D

You see the result in Figure 1. This is a PostScript rendition of the contour
plot. On the display, this is rendered as white lines on a black background.

122 Chapter 5: Creating Contour Plots
(We will have more to say about colors in just a moment.) Not terribly
impressive, I admit. But, wait, it gets better.

There are more than 60 different keywords you can use with the Contour
command to make the contour plot significantly more valuable to you.
Before we start to talk about the 15-20 of those keywords that you will
absolutely want to know how to use to add more features to a contour
plot, notice what is already there. The axes are labeled!

You will notice that both the horizontal or X axis, and the vertical or Y axis
have ranges that extend from 0 to 40. This should remind you of what hap-
pens with the Plot command when you only pass the dependent data set to
the command. IDL creates the independent data to plot the dependent
data against.

The same thing is going on here, except that IDL needs to create both an X
and a Y vector that specify the locations of each value in the 2D data array.
By default, these two vectors are just index vectors that are the same size
as the dimensions of the data array. In other words, IDL essentially exe-
cutes these commands, when the Contour command is called as it was in
the statement above.

IDL> s = Size(data2D, /Dimensions)

IDL> xvec = IndGen(s[0])

IDL> yvec = IndGen(s[1])

IDL> Contour, data2D, xvec, yvec

The X and Y data vectors must be monotonically increasing (or decreas-
ing) in value, but they do not have to be regularly spaced. The X and Y data

Figure 1: The most basic contour plot in IDL. There are 60+ key-
words that you can use to enhance the information content of the
Contour command to make it significantly more valuable to you.

Basic Contour Plots 123
parameters also don’t have to be vectors. They can be 2D arrays with the
same dimensions as the data array. Each element of the X and Y arrays will
then locate the corresponding element in the data array.

Normally, the X and Y data vectors represent some physical property of
the data or the way it was collected. For example, X and Y might represent
the longitude and latitude locations of the data, or they might represent
physical properties like temperature and pressure.

Let’s assume we are contouring satellite data and the X and Y vectors rep-
resent longitude and latitude locations. We want to express them, of
course, in map units. Normally, for these kinds of map contours, the X and
Y vectors would be expressed in terms of projected meters. If we assume
this data represents, say, atmospheric pressure collected by satellite and
gridded to 25 km grid cells, centered over Boulder, Colorado, USA, in an
orthographic map projection, then the projected meter values we are talk-
ing about extend from -512500 to +512500 in both X and Y. (Don’t get too
hung up on these details. I have some points I want to make about contour
plots, and sometimes it is easier to make those points using imagination
rather than reality. You will have plenty of time to use the techniques I am
going to show you with messy real data.)

If I want my data range to go from -512500 to +512500, then the center of
the first grid cell will be at -500000 and the center of the last grid cell will
be at +500000. I can make my vectors like this.

IDL> s = Size(data2D, /Dimensions)

IDL> lon = IndGen(s[0]) * 25000L - 500000L

IDL> lat = IndGen(s[1]) * 25000L - 500000L

IDL> Print, Min(lon), Max(lon)
-500000 500000

IDL> Print, Min(lat), Max(lat)
-500000 500000

These are large values to display on an axis, so it would be better to divide
these by, say, 1,000 and indicate this in the plot annotation. We could write
code like this.

IDL> lon = lon / 10^3

IDL> lat = lat / 10^3

IDL> xtitle = 'Longitude (projected meters x 1000)'

IDL> ytitle = 'Latitude (projected meters x 1000)'

IDL> Contour, data2d, lon, lat, XTitle=xtitle, $
YTitle=ytitle, Title='Atmospheric Pressure'

You see the result in Figure 2.

124 Chapter 5: Creating Contour Plots
Visually, this contour plot is not much better than the previous plot, but at
least the axes are labeled properly. Or, are they? Here we see a very com-
mon problem with contour plots in IDL that we first encountered with line
plots. Namely, the contour axes are auto-scaled. They are setting end
points that reflect IDL’s aesthetic sensibilities more than they do our desire
for a decent looking contour plot. I would say this is a problem in contour
plotting about 80 percent of the time.

The solution, of course, is the same as the solution for line plots: turn axis
auto-scaling off by setting the [XYZ]Style keywords to 1. The command
you want to use is this.

IDL> Contour, data2d, lon, lat, XTitle=xtitle, $
YTitle=ytitle, Title='Atmospheric Pressure', $
XStyle=1, YStyle=1

Before we look at the new contour plot results, let’s fix one other problem
with the plot. Contour plots are not very useful to us unless the contour
lines are labeled. And, usually, we need more contour lines than the
default contour plot gives us. We can choose the number of contour lines
we want to draw (sort of, I’ll explain this in detail in just a moment) by set-
ting the NLevels keyword. And we can choose which contour lines to label
by setting the C_Labels keyword. The C_Labels keyword is a vector,
whose value is set to 1 if you want that contour level labeled and to 0 if you
do not want it labeled.

Figure 2: This plot is not a whole better than the first, except that
the axes are labeled properly. Or are they? Note our old friend axis
auto-scaling rearing its ugly head!

Basic Contour Plots 125
To draw, say, 12 contour levels and label them all, we can type this com-
mand. Note the use of the Replicate command, which replicates the value
1 twelve times and returns a 12-element vector.

IDL> Contour, data2d, lon, lat, XTitle=xtitle, $
YTitle=ytitle, Title='Atmospheric Pressure', $
XStyle=1, YStyle=1, NLevels=12, $
C_Labels=Replicate(1, 12)

You see the result in Figure 3.

This contour plot is starting to contain the kind of information that will
make it useful to us. But there are still modifications we can make to
improve it even more. One problem we can fix, for example, is that the
contour labels appear to be too close together in some areas of the plot,
particularly in the upper right-hand corner. But we will address and solve
this problem shortly.

Before we do, let’s address another problem. The Contour command is
rapidly becoming too long to type!

Advantages of Keywords versus System Variables
In addition to the 50 or so general purpose graphics keywords that apply
to most IDL traditional graphics commands (you were introduced to per-
haps 20 of these in the line plot chapter), there are perhaps 10-12 more

Figure 3: Finally, the contour plot is getting into the realm of the
useful for us. Maybe the contour labels are too close together in
certain areas of the contour plot. But this is a problem that can be
addressed.

126 Chapter 5: Creating Contour Plots
keywords that apply specifically to contour plots. Most of these additional
keywords start with a “C_” prefix to identify them specifically as contour
plot keywords. The C_Labels keyword is an example . These keywords
can be discovered by consulting the IDL on-line help for the “CONTOUR
procedure.” IDL on-line help can be summoned like this.

IDL> ? contour

In IDL 8 and above, this will lead you straight to the new graphics IDL con-
tour function, which is not what you need here. Locate the Index of the
IDL on-line help application and find the IDL Contour procedure.

Many of the standard graphics commands have counterparts in the IDL
system variables, !P, !X, !Y, and !Z. I don’t, in general, recommend setting
these system variable counterparts because it is too easy to become con-
fused about what is happening to your IDL graphics output when these
system variables are set. Frankly, you will forget you have set them. Or,
even if you remember you have set them, you will forget what you set
them to.

In my own programming, I stay away from setting plotting system vari-
ables whenever possible. (And one of the reasons it takes me hours to

Figure 4: To learn which keywords are available for the IDL tradi-
tional graphics Contour command, be sure you locate the right en-
try in the IDL on-line help application. This shows the IDL help
application for IDL 8.0.

Customizing Contour Plots 127
debug a problem with a colleague’s IDL graphics program is that they do
use graphics system variables in a program far removed from the one they
have sent me to debug. Aaauugghhh!)

But, that said, I am going to break my rule. We are going to be using the
same data, displayed much the same way, throughout this chapter. I don’t
want to type long contour commands any more than you do. And, yet, I
want the examples in this book to be simple enough to type at the IDL
command line.

So, here are the system variables I am going to use.

IDL> !X.Title = 'Longitude (projected meters x 1000)'

IDL> !Y.Title = 'Latitude (projected meters x 1000)'

IDL> !P.Title = 'Atmospheric Pressure'

IDL> !P.Color = cgColor('black')

IDL> !P.Background = cgColor('white')

IDL> !X.Range = [-500, 500]

IDL> !Y.Range = [-500, 500]

IDL> !X.Style = 1

IDL> !Y.Style = 1

Now, to produce the same plot as before, I only have to use the contour
plot specific keywords. The command looks like this.

IDL> Contour, data2d, lon, lat, NLevels=12, $
C_Labels=Replicate(1, 12)

Note: Remember, when you are typing an IDL keyword you only have
to type enough letters to make it a unique keyword for the command.
You don’t have to type the full name of the keyword, although I always
do for the sake of clarity. I wouldn’t think of using a shortened key-
word name if I was writing an IDL program. Short keyword names
will make your programs especially hard for you and others to read
and debug later. But, it’s certainly okay to shorten keywords if you are
noodling around at the IDL command line.

Customizing Contour Plots
Before we do anything else, let’s fix the problem we identified earlier. The
contour labels are too close together in some areas of the contour plot,
particularly in the upper right-hand corner.

One way we can attempt to solve this problem is to make the contour
labels themselves smaller. The contour labels are drawn by default with a

128 Chapter 5: Creating Contour Plots
character size of 0.75. But we can set the size with the contour plot spe-
cific keyword C_Charsize. We could try, for example, a label size of 0.5.

IDL> Contour, data2d, lon, lat, NLevels=12, $
C_Labels=Replicate(1, 12), C_Charsize=0.5

You see the result in Figure 5. This improves the situation somewhat, but
almost makes the contour labels too small to read now.

Unfortunately, it is not possible to determine exactly where the labels
appear in traditional graphics contour plots. We do not have access to the
algorithm that determines this property. But another solution we can try is
to label every other contour interval. To do this, we need a vector of alter-
nating 1s and 0s to pass to the C_Labels keyword. A quick way to create
such a vector is like this.

IDL> everyOther = Reform(Rebin([1,0], 2, 6), 12)

IDL> Print, everyOther, Format='(12I2)'
 1 0 1 0 1 0 1 0 1 0 1 0

And we use it like this.

IDL> Contour, data2d, lon, lat, NLevels=12, $
C_Labels=everyOther

Another way to label every other contour level takes us all the way back to
IDL 4, but you still see it in use today. This method sets the Follow key-
word. Originally, the Follow keyword would select the “contour-
following,” rather than the “cell-filling” algorithm for creating the contour

Figure 5: The contour labels can be sized independently of the con-
tour plot titles and other annotations.

Customizing Contour Plots 129
plot. One side-effect of the contour-following drawing algorithm was to
label every other contour line. Today, all contour plots use the contour-fol-
lowing algorithm to draw the contours, but the keyword persists because
of this useful side-effect. This command, then, has the same effect as the
previous command.

IDL> Contour, data2d, lon, lat, NLevels=12, /Follow

You see the result in Figure 6.

Notice that neither of the contours in the lower-left corner of the plot are
labeled, even though they are adjacent to one another. The smaller con-
tour inside the larger should be labeled. But contour lines must have a
non-specified minimum length to be labeled. This contour line is too short
to be labeled. You don’t have control over this, and the only solution is to
make your contour plot larger, so that particular contour line will become
long enough to be marked for labeling.

Selecting Contour Levels
The IDL documentation describes the NLevels keyword to the Contour
command as representing the “number of equally spaced contour levels”.
If this keyword is not used, then “approximately six levels are drawn.”
This turns out to be a bit of fiction, as I will demonstrate in just a moment.
In fact, the number of contour levels specified with the NLevels keyword is

Figure 6: Labeling every other contour line can be accomplished
with the modern C_Labels keyword or the much older Follow key-
word.

130 Chapter 5: Creating Contour Plots
highly dependent on the data being contoured and is rarely, if ever, equal
to the number of levels you set with this keyword. It’s true that as this
number gets larger, more contour lines are drawn, but don’t rely on the
number of lines being accurate.

Consider the default case of “approximately six levels”.

IDL> Contour, data2d, lon, lat, C_Labels=Replicate(1,6)

As you can see in Figure 7, the contour plot drew (maybe if we are being
generous) three levels, at most. But nothing like six.

As it turns out with this particular data set, that when we ask for 12 con-
tour levels, we actually get nine. But I will postpone this demonstration
until the section dealing with filled contour plots, when this will become
evident.

The bottom line is this. If you want N contour levels, then you need to
define those levels yourself and specify them with the Levels keyword to
the Contour command, rather than with the NLevels keyword. The Levels
keyword is how you specifically select levels in your data to contour.

For example, if you want to draw contours at 250, 500, 750, and 1000 pres-
sure units in this contour plot, you would type these commands.

IDL> levels = [250,500,750,1000]

IDL> Contour, data2d, lon, lat, Levels=levels, $
C_Labels=Replicate(1,4)

Figure 7: The NLevels keyword does not, generally, give you “N
contouring levels” as claimed by the IDL documentation. Treat
this as an approximation to the number of contour levels.

Customizing Contour Plots 131
You see the result in Figure 8.

If you want exactly 12 contour levels, you would have to calculate those
levels yourself. Do not use the NLevels keyword. You would do it like this.

IDL> nlevels = 12

IDL> step = (Max(data2d) - Min(data2d)) / nlevels

IDL> levels = IndGen(nlevels) * step + Min(data2d)

IDL> Contour, data2d, lon, lat, Levels=levels, /Follow

You see the result in Figure 9. You can compare this with Figure 6 to see
that this result is different from creating the contour plot as we did before
with the keyword NLevels=12.

Note that the contour levels do not always have to be labeled with the
value of the contour level. You can use the C_Annotation keyword to
choose alphanumeric annotations for the contour levels. For example, you
could label the contour levels 250, 750, and 1200 as “low,” “medium,” and
“high,” like this.

IDL> threeLevels = [250, 750, 1200]

IDL> annotations = ['Low', 'Medium', 'High']

IDL> Contour, data2d, lon, lat, Levels=threeLevels, $
C_Annotation=annotations

You see the result in Figure 10.

Figure 8: Contour levels can be selected and specified directly with
the Levels keyword. For consistent results, the Levels keyword
should be used instead of the NLevels keyword to specify contour
levels.

132 Chapter 5: Creating Contour Plots
Modifying Contour Lines
Contour lines can be drawn in the usual battery of line styles (see
page 84). For example, to draw every other contour line in a dashed line
style, we can use the C_LineStyle keyword like this.

IDL> Contour, data2d, lon, lat, Levels=levels, $
C_LineStyle=[0,2], C_Labels=everyOther

You see the result in Figure 11.

Figure 9: To get exactly 12 contour levels, you must calculate the
levels yourself, rather than specifying 12 levels with the NLevels
keyword.

Figure 10: Contour levels can be labeled with alphanumeric labels.

Customizing Contour Plots 133
Note that the C_LineStyle keyword is a “wrapping” keyword. In other
words, its values “wrap around” and can be used over again if there are
more than just two contour lines to draw. Most of the contour keywords
are wrapping keywords. The one notable exception to this rule is the
C_Labels keyword. If you set this keyword with just two values, as you
just did for the C_LineStyle keyword, then only the first two contour lines
will be labeled according to the values present in the vector. I don’t know a
good reason why the C_Labels keyword defies the rule. I’ve often had
cause to wish it didn’t.

Sometimes you want to make a thicker contour line at regular intervals.
For example, we can make every third line a thicker line by using the
C_Thick keyword like this.

IDL> everyThird = Reform(Rebin([0,0,1], 3, 4), 12)

IDL> Contour, data2d, lon, lat, Levels=levels, $
C_Thick=[1,1,2], C_Labels=everyThird

You see the result in Figure 12.

It still might be difficult to determine which direction in a contour plot is
the downhill direction. We can use the Downhill keyword to put small tick
marks in the downhill direction of the contour lines, like this.

IDL> Contour, data2d, lon, lat, Levels=levels, $
C_Thick=[1,1,2], C_Labels=everyThird, /Downhill

You see the result in Figure 13.

Figure 11: Contour lines can be displayed in different line styles.
Use the C_Linestyle keyword to select a line style for each contour
level.

134 Chapter 5: Creating Contour Plots
Adding Color to Contour Plots
Contour plots can be drawn in a different color by setting the Color key-
word. But, as with line plots, this will affect both the contour lines and the
contour plot axes and annotations. Normally, when we are adding color to
a contour plot, we want the axes to be one color and the contour lines to

Figure 12: Every third line in the contour plot is made thicker with
the C_Thick keyword.

Figure 13: Ticks are placed in the downhill direction using the
Downhill keyword.

Adding Color to Contour Plots 135
be drawn in some other color or colors. The contour line colors can be
selected with the C_Colors keyword to the Contour command.

The C_Colors keyword is a vector that describes, almost always, the color
table indices with which each contour line is to be drawn. The only excep-
tion I am aware of is when these color indices are translated into 24-bit
integers by cgColor so that the contour plot can be drawn using the color
decomposition model. This, in fact, is how cgContour, a program you will
learn more about later in this chapter, manages to draw color contour
plots without ever loading colors into the physical color table.

This implies two very important points about adding color to contour
plots. First, we need to load colors into the color table at the indices we
specify in the C_Colors vector. And, then, we typically need to set our-
selves up to be in indexed color mode to be able to see the proper colors.
(See “Understanding IDL Color Models” on page 36 for additional informa-
tion about color modes and models.) If we are using the default
decomposed color mode, and we load color indices as the contour colors,
then no matter what colors we have loaded into the color table, the con-
tour colors will be displayed in shades of red!

I typically load contour colors at the bottom of the color table, so they
don’t interfere with the default locations of other drawing colors loaded
with cgColor. I also often use Brewer color tables, rather than the ones
supplied with IDL. If you do use IDL color tables, be careful which ones
you select. Most of the IDL-supplied color tables use white and black as
colors at either end of the color table. These are generally not the colors
you want to use in a contour plot. If you use cgLoadCT to load IDL color
tables, rather than LoadCT, you can use the Clip keyword to clip these
troublesome colors from either end of the color table. (Black and white
colors are sometimes used, however, to indicate either missing or totally
saturated areas in the data.)

In the example here, there are 12 contour levels, so I need 12 contour col-
ors. I choose to load these colors at the bottom of the color table, starting
in color index 1. I do not ever load contour colors into color index 0 or 255,
or it becomes impossible to produce PostScript output correctly. Since I
depend on PostScript output to produce nice looking IDL plots for presen-
tations, web output, and books, this is critical to me. Here is how I load
colors from the IDL Blue-Red color table.

IDL> LoadCT, 33, NColors=12, Bottom=1

This color table has blue at one end of the color table and red at the other,
so it is appropriate for contour colors. If I had wanted, say, to use the Stan-
dard Gamma II color table, I might have done something like this.

136 Chapter 5: Creating Contour Plots
IDL> LoadCT, 5, NColors=12, Bottom=1

This color table has a black color at one end of the color table and a white
color at the other end, as shown in Figure 14.

I can clip the black and white colors from this color table with cgLoadCT
and the Clip keyword. In this example, colors are selected uniformly from
the color table using the range of color indices 30 to 240, rather than from
the usual 0 to 255.

IDL> cgLoadCT, 5, NColors=12, Bottom=1, Clip=[30,240]

You see the result in Figure 15.

Using Colors in Contour Plots
Next, I set IDL to indexed color mode, saving the current color mode so I
can set it back after I draw the contour plot.

IDL> Device, Get_Decomposed=currentMode

IDL> Device, Decomposed=0

Note: It is not possible to use both keywords at the same time with the
Device command. If I do use both keywords, it will work correctly on
Windows machines (the current mode will be fetched before it is
changed to another mode), but it will fail on UNIX machines (the
mode will be changed before the current mode is fetched). This opera-
tion must always be done in two steps to work in a device independent
way. (Learn about the SetDecomposedState command below, which
solves this problem for you.)

Figure 14: The twelve colors loaded by LoadCT for contour colors.
Notice the black and white color at either end of the color range.

Figure 15: The same color table as before, but with the black and
white colors “clipped” from each end by loading the colors with
cgLoadCT and using the Clip keyword.

Adding Color to Contour Plots 137
Finally, I draw the contour plot, using the NoData keyword to suppress
drawing the contour lines. The contour lines are placed on the contour
plot using the Overplot keyword and are drawn in color by setting the
C_Color keyword to the proper color index values (in this case, 1 to 12).
When I am done drawing the contour plot, I return to the color mode in
effect before I changed the mode.

IDL> LoadCT, 33, NColors=12, Bottom=1

IDL> Contour, data2d, lon, lat, Levels=levels, /NoData, $
Background=cgColor('white'), $
Color=cgColor('black')

IDL> Contour, data2d, lon, lat, Levels=levels, $
/Overplot, C_Colors=IndGen(12)+1, $
C_Labels=everyOther

IDL> Device, Decomposed=currentMode

You see the result in Figure 16.

Setting the Color Decomposition State
When we start to work with color table indices, such as those specified
with the C_Colors keyword, in contour plots, we put ourselves in a posi-
tion where we must use the indexed color model to display the colors.
This is a problem with the code we have just written because it sets the

Figure 16: Contour lines can be drawn with colors, using the
C_Colors keyword to indicate which color index in the color table
should be used to select the color. This implies the indexed color
mode is in effect when the plot is drawn.

138 Chapter 5: Creating Contour Plots
color decomposition state with the Decomposed keyword to the Device
command.

Of course, this works perfectly on the display, because both normal dis-
play devices (i.e., X and WIN) accept a Decomposed keyword for the
Device command. But some devices, such as older PostScript devices
(older than IDL 7.1), do not. On those devices, the code above will throw
an error on the first or second line of code!

The way we get around this problem is to use two programs from the Coy-
ote Library that encapsulate the device and version dependencies so that
we can obtain the current decomposition state, and set the decomposition
state of the current graphics device in a device and version independent
way. The two programs are GetDecomposedState to get the current color
decomposition state or mode, and SetDecomposedState to set the current
decomposition state or mode. The SetDecomposedState program uses
GetDecomposedState to obtain the current color decomposition state
before it is changed. This also solves the problem of having to get the
decomposition state in one command for UNIX machines and set it with
another (see “Setting the Color Model” on page 51 for more information).
You will see these programs used in the code throughout the rest of this
chapter.

Naturally, we can do other things with color and contour lines. For exam-
ple, we could draw most lines blue, and every third line red, using code
like this.

IDL> TVLCT, cgColor('blu4', /Triple), 1

IDL> TVLCT, cgColor('red4', /Triple), 2

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, data2d, lon, lat, Levels=levels, /NoData, $
Background=cgColor('white'), $
Color=cgColor('black')

IDL> Contour, data2d, lon, lat, Levels=levels, $
/Overplot, C_Colors=[1,1,2], C_Labels=everyThird

IDL> SetDecomposedState, currentState

You see the result in Figure 17.

Creating Color Filled Contour Plots
It is often when creating color filled contour plots that people run into the,
well, peculiarities of the traditional graphics Contour command. It might
be helpful to see how most people approach the problem of creating a

Creating Color Filled Contour Plots 139
color filled contour plot to see what some of the difficulties are and how to
work around them.

Most people who want to create a color filled contour plot in IDL simply
read the on-line documentation and see the directions call for loading a
color table and setting the Fill keyword, and that’s about it. Job done.
Maybe they set NLevels to the number of contour levels they want to have
in their filled contour plot.

Their first command might look something like this. Note I am adding a
color bar to the contour command plot. This is common with filled color
contour plots to give the user a sense of what the colors mean in the con-
tour plot. IDL doesn’t come with a traditional graphics color bar
command, so I am going to use the cgColorbar program from the Coyote
Library to produce the color bar above the contour plot. (Another alterna-
tive would be to use the discrete color bar command, cgDCBar, if I didn’t
have too many contour levels.) Notice how I save room for the color bar
by using the Position keyword on the Contour command.

IDL> LoadCT, 33

IDL> Contour, data2d, lon, lat, /Fill, NLevels=12, $
Position=[0.125, 0.20, 0.95, 0.75], $
Background=cgColor('white'), $
Color=cgColor('black'), XStyle=1, YStyle=1

IDL> Contour, data2d, lon, lat, /Overplot, $
Color=cgColor('black'), NLevels=12, $
C_Labels=everyOther

Figure 17: The C_Colors keyword is also a wrapping keyword.
Here we draw contour lines in blue, except every third contour line
is drawn in red.

140 Chapter 5: Creating Contour Plots
IDL> cgColorbar, Range=[Min(data2d),Max(data2d)], $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', Charsize=0.75, $
Position=[0.125, 0.92, 0.95, 0.96]

What many people see on their display when they create this kind of color
filled contour plot in IDL is shown in Figure 18.

A number of things appear to be wrong with this contour plot. It certainly
didn’t use the colors we loaded into the color table. (You can see the con-
tour plot is using different colors from those used in the color bar.) And
there appears to be some kind of hole in the plot where we see the white
background color. What in the world is going on here!?

Let’s see if I can explain. The traditional graphics Contour command is
very old. It was one of the first graphics commands added to IDL when the
language was first written in the early 1980s. It was purchased from
another software company to be added to IDL. Because it was purchased,
the Contour command has always been something of a black box to IDL
developers. Frankly, the code is not documented very well. It works, but
no one seems to know exactly how it works!

Because of this, the Contour command has not changed much over the
years. One way it hasn’t changed is that in nearly 100 percent of the IDL
programs I’ve ever seen, contour colors are expressed as indices into a
color table. This means to use the Contour command successfully with

Figure 18: This is a typical result for many IDL users when they
create a filled contour plot for the first time.

Creating Color Filled Contour Plots 141
contour colors, you must be in indexed color mode. If you are not in
indexed color mode, then you are by definition in decomposed color mode
(the IDL default), and indexed colors in this mode will always appear in
shades of red, no matter what colors you have loaded in the color table.
The cgColorbar command is smart enough to put itself into the correct
mode before it displays colors, but the Contour command is not.

So, you can solve the color problem and get yourself closer to what you
want by just putting yourself in indexed color mode to use the Contour
command.

IDL> LoadCT, 33

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, data2d, lon, lat, /Fill, NLevels=12, $
Position=[0.125, 0.125, 0.95, 0.80], $
Background=cgColor('white'), $
Color=cgColor('black'), XStyle=1, YStyle=1

IDL> Contour, data2d, lon, lat, /Overplot, $
Color=cgColor('black'), NLevels=12, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(data2d),Max(data2d)], $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', Charsize=0.75, $
Position=[0.125, 0.915, 0.955, 0.95]

You see the result in Figure 19.

We still have problems with this plot. For example, what about the colors
themselves? We obviously are expecting 12 colors, since we asked for 12
contour levels with the NLevels keyword. In fact, (ignoring the white hole
for a moment), we only find nine colors being used in the contour plot. On
the other hand, the color bar looks like it is using 256 colors, but there
appear to be some “extra” colors in the color bar itself. For example, there
is a white line at about 388 and an extra black line about 517. Where are
these colors coming from?

Two things are going on here. First, we have allowed IDL to choose colors
from the color table for us. This is almost always a bad idea. By just setting
the Fill keyword and not specifying which color indices we want to use
with the C_Colors keyword we learned about in the previous section, IDL
has “selected” some colors out of the color table. Which ones? Who
knows! It would be better to load 12 colors at some defined location in the
color table and use those specific 12 colors for both the contour plot and
the color bar. We can modify the commands above to do this easily. We use
the NColors and Bottom keywords when we load the colors, and we use

142 Chapter 5: Creating Contour Plots
C_Colors on the Contour command to specify those twelve color indices,
starting at index 1 to be the colors we use in the contour plot.

IDL> LoadCT, 33, NColors=12, Bottom=1

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, data2d, lon, lat, /Fill, NLevels=12, $
Position=[0.125, 0.125, 0.95, 0.80], $
Background=cgColor('white'), $
Color=cgColor('black'), XStyle=1, YStyle=1, $
C_Colors=IndGen(12)+1

IDL> Contour, data2d, lon, lat, /Overplot, $
Color=cgColor('black'), NLevels=12, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(data2d),Max(data2d)], $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=12, Bottom=1, $
Position=[0.125, 0.915, 0.955, 0.95], $
Charsize=0.75

You see the result in Figure 20.

Figure 19: By running the Contour command in indexed color
mode, the contour colors are (mostly!) correct.

Creating Color Filled Contour Plots 143
If you look carefully, you will notice that the problem of extra lines in the
color bar has gone away in this version of the contour plot. How come?

What was happening is that when you use indexed color mode your color
table can become “dirty” or “contaminated” from other programs using it.
There is only one color table and all programs running in IDL in indexed
color mode get their colors from that same color table. If a program is
forced to load colors in the color table, and you use that table without first
loading it with the colors you expect to be there, those colors could well
be wrong.

In our case, since we set ourselves in indexed color mode, and then used
cgColor to load drawing colors for the contour plot, cgColor was forced to
use the color table. This corrupted the color table and those corrupted col-
ors later showed up when we used all 256 colors for the color bar.

There is an absolute rule about using indexed color mode that you want to
memorize. When using indexed color mode, always, always load the col-

Figure 20: By choosing and loading only 12 colors, we can match
the colors in the contour plot with the colors in the color bar. Well,
almost. We still have a small problem that we are not using 12 col-
ors in the contour plot!

144 Chapter 5: Creating Contour Plots
ors you want to use from the color table immediately prior to using them.
Don’t assume they will be correct!

By restricting the colors to the bottom of the color table as we are doing in
the last command, we don’t run into, or use, colors that may have been
loaded by cgColor. We are corrupting the color table for sure, but it is not
doing us any harm, since we have separated the drawing colors from the
contour fill colors. (If you want to see the colors you have loaded in the
current color table, type CIndex.)

Note: I should mention that it is not absolutely required that indexed
colors be used in contour plots. It is possible to use decomposed colors.
In fact, cgContour, which you will learn about later in this chapter (on
page 162), uses decomposed colors whenever possible. It uses cgColor
to convert color table index values to decomposed color values. (See
“Using cgColor With Color Table Indices” on page 45.) But I have seen
thousands of IDL programs with contour plots in them, and cgContour
is the only one I have ever seen that works with decomposed colors.
That’s why I think it is important to know how to set up indexed con-
tour colors correctly.

With this plot it is now obvious we are only using nine contour intervals,
not 12. For example, there are no red colors in the plot, even though we
have red colors in the 12 colors of the color bar. It is also obvious that the
labels on the contour lines don’t match the values on the color bar. Why
not?

The reason is that we have let IDL choose the contour intervals for us with
the NLevels keyword, and whatever algorithm IDL is using to do this is not
giving us the kind of results we expect. To create 12 contour intervals
exactly, and have the color bar values match the contour labeling, we must
create the contour levels ourselves. Then, we must use the Levels keyword
to specify the levels and forget we ever heard about the NLevels keyword.

The code becomes something like this.

IDL> nlevels = 12

IDL> LoadCT, 33, NColors=nlevels, Bottom=1

IDL> step = (Max(data2d) - Min(data2d)) / nlevels

IDL> levels = IndGen(nlevels) * step + Min(data2d)

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, data2d, lon, lat, /Fill, Levels=levels, $
Position=[0.125, 0.125, 0.95, 0.80], $
Background=cgColor('white'), $
Color=cgColor('black'), XStyle=1, YStyle=1, $
C_Colors=IndGen(nlevels)+1

Creating Color Filled Contour Plots 145
IDL> Contour, data2d, lon, lat, /Overplot, $
Color=cgColor('black'), Levels=levels, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(data2d),Max(data2d)], $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=12, Bottom=1, $
Position=[0.125, 0.915, 0.955, 0.95], $
Charsize=0.75

You see the result in Figure 21.

Notice that one consequence of defining your own contour levels is that
the hole in the contour plot disappears! The other major benefit, of course,
is that now your contour labels agree with the values in the color bar, and
all 12 contour levels are colored with the appropriate colors.

Choosing a Different Fill Algorithm
There are occasions when the Fill keyword is not appropriate for creating
filled contour plots. The algorithm that the Contour command uses to fill

Figure 21: By specifying your own contour levels, the contour la-
bels match the values in the color bar, and the hole in the contour
plot disappears.

146 Chapter 5: Creating Contour Plots
contours can become confused if there are “open” contours to fill. Open
contours are sometimes created by missing data and are often created by
drawing filled contours on map projections set up with the Map_Set com-
mand. If you are having trouble with your filled contour plots, always try
replacing the Fill keyword with the Cell_Fill keyword.

The Cell_Fill keyword uses a “cell filling” algorithm that is slightly less
efficient and slower than the algorithm used by setting the Fill keyword.
The upside, however, is that it is sometimes more accurate because it
draws more contour polygons to fill. In the case of the data we have been
using, the results would be identical for both keywords.

Filled Contours on Map Projections
If you are placing filled contour plots on map projections (especially those
created with the Map_Set command), an excellent rule of thumb is to
always use the Cell_Fill keyword rather than the Fill keyword. It is notori-
ously easy to inadvertently create open contours with map projections,
and the danger is that if you don’t use Cell_Fill, the colors of your contours
may be incorrect. And, what is worse, it will be extremely difficult to tell
this is the case.

The only trick in putting filled contour plots on map projections is that all
three positional parameters are required parameters in this case, and you
must overplot the filled contours onto the map by setting the Overplot
keyword.

Suppose we use this same data set, but adjust the X and Y positional
parameters so they represent locations in the United States, represented
by a longitude range of -124º to -66º and a latitude range of 25º to 50º.
Recall that the data variable, data2d, is a 41 x 41 array. Normally, when I
have to create variables of a particular size, with explicit endpoints, I use
the Coyote Library routine Scale_Vector to do so. We can create the
proper X and Y vectors like this.

IDL> lats = Scale_Vector(Findgen(41), 25, 50)

IDL> lons = Scale_Vector(Findgen(41), -124, -66)

Now we are ready to set up the map projection data coordinate space
using the Map_Set command, like this. Note that we have to erase the win-
dow with a background color with a map projection to get the background
color we want. The NoErase keyword on the Map_Set command is essen-
tial here to prevent the background color from being erased.

IDL> Erase, Color=cgColor('white')

IDL> Map_Set, /Mercator, 37.5, -95, /NoBorder, $
Limit=[25, -124, 50, -66], $

Contouring Irregularly Sampled Data 147
Color=cgColor('black'), $
Position=[0.05, 0.05, 0.95, 0.80], /NoErase

We put the filled contour command on the map like this. Here I am using a
Brewer color table, whose colors are designed to work well on maps. I
load the Brewer color table with the Coyote Library routine cgLoadCT.

IDL> nlevels = 12

IDL> step = (Max(data2d) - Min(data2d)) / nlevels

IDL> levels = IndGen(nlevels) * step + Min(data2d)

IDL> cgLoadCT, 4, NColors=nlevels, Bottom=1, /Brewer, $
/Reverse

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, data2d, lons, lats, /Cell_Fill, $
Levels=levels, C_Colors=IndGen(nlevels)+1, $
/Overplot

IDL> Contour, data2d, lons, lats, /Overplot, $
Color=cgColor('grey'), Levels=levels, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

Finally, we can add the map outlines and the color bar to complete the
plot.

IDL> Map_Continents, Color=cgColor('charcoal')

IDL> Map_Continents, Color=cgColor('charcoal'), /USA

IDL> cgColorbar, Range=[Min(data2d),Max(data2d)], $
Divisions=nlevels, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=nlevels, $
Bottom=1, Position=[0.1, 0.87, 0.9, 0.90], $
Title='Atmospheric Pressure', Charsize=0.75

You see the result in Figure 22.

Contouring Irregularly Sampled Data
The data we have passed to the Contour command so far has always been
gridded two-dimensional data. Sometimes our data are not like that. For
example, if we are collecting atmospheric pressure data, as we have been
supposing in the examples so far, we may be sending weather balloons up
to collect the data. Such data will be distributed in random locations over
the sampling area.

Such a data array must be gridded before it can be contoured, but we have
a couple of ways to proceed. We can either grid the data array ourselves
and then pass it to the Contour command. Or, we can simply ask the Con-

148 Chapter 5: Creating Contour Plots
tour command to grid the data array for us, before contouring it, by setting
the Irregular keyword. We have more control, and more options, if we grid
the data array ourselves, so I will show you a simple gridding method you
can use with your data.

It might be interesting to sample the data set we are using now, just to see
how well we can reproduce the results with irregularly sampled data. To
do so, we need to make two-dimensional arrays of our X and Y vectors. We
can do that like this.

IDL> lat2d = Rebin(Reform(lat, 1, 41), 41, 41)

IDL> lon2d = Rebin(lon, 41, 41)

Let’s create 200 random points from this data set, add some random noise
to the data, so they don’t fall directly on a grid, and display them in a plot
to see where they are located.

IDL> pts = Round(RandomU(-3L, 200) * 41 * 41)

IDL> dataIrr = data2d[pts]

Figure 22: Be sure to use the Cell_Fill keyword to add filled con-
tour plots to map projections created with the Map_Set command
Map projections often create open contours that the Fill keyword
doesn’t handle well.

Contouring Irregularly Sampled Data 149
IDL> lonIrr = lon2d[pts] + RandomU(5L, 200) * 50 - 25

IDL> latIrr = lat2d[pts] + RandomU(8L, 200) * 50 - 25

IDL> Plot, lonIrr, latIrr, PSYM=4, XRange=[-500, 500], $
YRange=[-500,500], XStyle=1, YStyle=1, $
Title='Random Sampling Locations'

Note: In the code above I used particular numbers for the random
number seed (i.e., -3L, 5L, and 8L). This is so your results will be iden-
tical to the results shown here. If you want truly random values, use
the variable “seed” as the seed in the RandomU commands above.

You see the result in Figure 23.

The simplest way to grid irregular data yourself is to use the two IDL rou-
tines Triangulate and Trigrid. This is the method used by the Contour
command itself, although you don’t have access to the parameters of the
routines when doing the gridding directly with the Contour command.

The Triangulate command is used to produce a set of Delaunay triangles
that the Trigrid command can use to produce the gridded data. Delaunay
triangulation is an algorithm for producing a set of triangles from a set of
points, such that a circle formed by connecting the vertices of any triangle
does not contain any other point. Triangulations are sometimes plagued by
collinear points. (One of the reasons contouring irregular data directly
with the Contour command will sometimes fail.) You can use the Repeat

Figure 23: Here are the simulated random sampling locations of
the data values we want to contour.

150 Chapter 5: Creating Contour Plots
and Tolerance keywords to the Triangulate command to deal with circum-
stances like this.

To create the set of Delaunay triangles and return them in an output trian-

gles variable, we use the Triangulate command.

IDL> Triangulate, lonIrr, latIrr, triangles

Now we are ready to pass these triangles to the Trigrid command. We can
set the size of the output grid we want with the NX and NY keywords. The
default grid size is 51 by 51. Since we are trying to reproduce the original
data, we will set these keywords to produce a grid of 41 by 41.

The important thing in gridding irregular data to contour is to return from
Trigrid the X and Y vectors that specify the locations of the gridded data.
These can be obtained from the XGrid and YGrid output keywords. The
command will look like this.

IDL> gridData = Trigrid(lonIrr, latIrr, dataIrr, $
triangles, NX=41, NY=41, $
XGrid=xgrid, YGrid=ygrid)

We can display this gridded data as a filled contour plot.

IDL> nlevels = 12

IDL> step = (Max(gridData) - Min(gridData)) / nlevels

IDL> levels = IndGen(nlevels) * step + Min(gridData)

IDL> LoadCT, 33, NColors=nlevels, Bottom=1

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, gridData, xgrid, ygrid, /Cell_Fill, $
Levels=levels, Background=cgColor('white'), $
Position=[0.125, 0.125, 0.95, 0.80], $
Color=cgColor('black'), XStyle=1, YStyle=1, $
C_Colors=IndGen(nlevels)+1

IDL> Contour, gridData, xgrid, ygrid, /Overplot, $
Color=cgColor('black'), Levels=levels, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(gridData),Max(gridData)], $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=12, Bottom=1, $
Position=[0.125, 0.915, 0.955, 0.95], $
Charsize=0.75

You see the result in Figure 24. Compare this result with Figure 21. Not too
bad, considering we used less than 15 percent of the original data points to
construct the gridded data set.

This result should not look too different from doing the gridding directly
with the Contour command by setting the Irregular keyword.

Contouring Irregularly Sampled Data 151
IDL> nlevels = 12

IDL> step = (Max(dataIrr) - Min(dataIrr)) / nlevels

IDL> levels = IndGen(nlevels) * step + Min(dataIrr)

IDL> LoadCT, 33, NColors=nlevels, Bottom=1

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, dataIrr, lonIrr, latIrr, /Fill, $
Levels=levels, Background=cgColor('white'), $
Position=[0.125, 0.125, 0.95, 0.80], $
Color=cgColor('black'), XStyle=1, YStyle=1, $
C_Colors=IndGen(nlevels)+1, /Irregular

IDL> Contour, dataIrr, lonIrr, latIrr, /Overplot, $
Color=cgColor('black'), Levels=levels, $
C_Labels=everyOther, /Irregular

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(gridData),Max(gridData)], $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=12, Bottom=1, $
Position=[0.125, 0.915, 0.955, 0.95], $
Charsize=0.75

Figure 24: Irregular data can be gridded with Triangulate and
Trigrid before being contoured.

152 Chapter 5: Creating Contour Plots
You see the result in Figure 25 .

Comparing Figure 25 to Figure 24, you see one obvious difference. The
blue border around the outside of Figure 24 is missing in Figure 25. What
is the Contour command doing that we didn’t do when we gridded the data
ourselves?

It turns out that the Contour command sets all gridded data that falls out-
side the Delaunay triangle boundary (or, another way of say this is outside
the “convex hull” of the data points) to the missing value NaN (not a num-
ber). We can do this ourselves with the Missing keyword to TriGrid.
Because we didn’t use the Missing keyword, all our missing data values
got set to 0. We probably want to set our missing values to something other
than 0, but this introduces several other complications I think you should
know about.

Suppose we decide to set all data outside the convex hull to the missing
value NaN. Floating point NaNs are represented in IDL with the system
variable !Values.F_NAN. We would set the missing values like this.

Figure 25: The same irregular data gridded by the contour com-
mand directly by setting the Irregular keyword.

Contouring Irregularly Sampled Data 153
IDL> gridData = Trigrid(lonIrr, latIrr, dataIrr, $
triangles, NX=41, NY=41, $
XGrid=xgrid, YGrid=ygrid, Missing=!Values.F_NAN)

But, in the rest of our code, we have to be careful to handle missing data
correctly. For example, we have these two lines in our display code.

IDL> step = (Max(gridData) - Min(gridData)) / nlevels

IDL> levels = IndGen(nlevels) * step + Min(gridData)

Look what happens when we check the values of these variables.

IDL> Help, step
STEP FLOAT = NaN

IDL> Print, levels

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Yikes! Those kinds of values are not going to create a very good looking
contour plot. To create the correct values, we are going to have to be care-
ful to set the NaN keyword on these functions to properly exclude NaN
values.

IDL> step = (Max(gridData, /NaN) - Min(gridData, /NaN)) $
/ nlevels

IDL> Help, step
STEP FLOAT = 118.689

IDL> levels = IndGen(nlevels) * step + $
Min(gridData, /NaN)

IDL> Print, levels
23.9834 142.672 261.360 380.049
498.737 617.426 736.115 854.803
973.492 1092.18 1210.87 1329.56

We have several of these functions in our display code. Here is the modi-
fied code.

IDL> nlevels = 12

IDL> step = (Max(gridData, /NaN) - Min(gridData, /NaN)) $
/ nlevels

IDL> levels = IndGen(nlevels) * step + $
Min(gridData, /NaN)

IDL> LoadCT, 33, NColors=nlevels, Bottom=1

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, gridData, xgrid, ygrid, /Fill, $
Levels=levels, Background=cgColor('white'), $
Position=[0.125,0.125,0.95,0.80], $
Color=cgColor('black'), XStyle=1, YStyle=1, $
C_Colors=IndGen(nlevels)+1

IDL> Contour, gridData, xgrid, ygrid, /Overplot, $

154 Chapter 5: Creating Contour Plots
Color=cgColor('black'), Levels=levels, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(gridData, /Nan), $
Max(gridData, /NaN)], Charsize=0.75, $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=12, Bottom=1, $
Position=[0.125, 0.915, 0.955, 0.95]

You see the result in Figure 26.

Something bad is going on here! What has happened is that by introducing
NaNs into the data, we have caused “open contours” to appear in the con-
touring algorithm. The Fill keyword to the Contour command selects an
algorithm that doesn’t know how to cope with open contours very well. To
correct the problem, we have to choose the Cell_Fill keyword instead.

Making just this one change in the code above, produces the result you see
in Figure 27.

Figure 26: Something bad has happened to our filled contour plot!

Contouring Irregularly Sampled Data 155
This result can now be compared favorably to the Contour result itself in
Figure 25.

Gridding Irregular Data
An even more powerful method of gridding data, because it has many
more options that the Triangulate/Trigrid method we just discussed, is to
use the IDL routine GridData in combination with the QHull command
which can build Delaunay triangles. Let’s try to use it to build a similar grid
for contouring.

First, we build the set of Delaunay triangles, using QHull.

IDL> QHull, lonIrr, latIrr, triangles, /Delaunay

Next, we grid the data, using the triangles we just created. We have our
choice of several different gridding methods, among which are inverse dis-
tance, kriging, linear interpolation, nearest neighbor, polynomial fitting
and so on. We are going to use the inverse distance method, in which data
points closer to the grid are weighted more heavily than grid points further
away.

Figure 27: By changing the Fill keyword to Cell_Fill, we produce
the correctly filled contour plot.

156 Chapter 5: Creating Contour Plots
IDL> gridData = GridData(lonIrr, latIrr, dataIrr, $
Method='InverseDistance', Dimension=[41,41], $
Start=[-500, -500], Delta=[25, 25], $
Triangles=triangles, Missing=!Values.F_NaN)

So that we can use our current lon and lat vectors, we set the Start, Delta,
and Dimension keywords to produce a grid that is identical to our original
gridded data set.

We display the data like this.

IDL> nlevels = 12

IDL> step = (Max(gridData, /NaN) - Min(gridData, /NaN)) $
/ nlevels

IDL> levels = IndGen(nlevels) * step + $
Min(gridData, /NaN)

IDL> LoadCT, 33, NColors=nlevels, Bottom=1

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, gridData, lon, lat, /Fill, $
Levels=levels, Background=cgColor('white'), $
Position=[0.125,0.125,0.95,0.80], $
Color=cgColor('black'), XStyle=1, YStyle=1, $
C_Colors=IndGen(nlevels)+1

IDL> Contour, gridData, lon, lat, /Overplot, $
Color=cgColor('black'), Levels=levels, $
C_Labels=everyOther

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Range=[Min(gridData, /Nan), $
Max(gridData, /NaN)], Charsize=0.75, $
Divisions=12, XTicklen=1, XMinor=0, $
AnnotateColor='black', NColors=12, Bottom=1, $
Position=[0.125, 0.915, 0.955, 0.95]

You see the result in Figure 28. You have to be somewhat careful in how
you interpret contouring results. Look, for example, in the lower right cor-
ner of this figure. Are there really two peaks in the data? Possibly, but we
can’t be sure. It is not that the contouring algorithm is wrong or that the
result is incorrect; it is that the resolution of the data does not always lend
itself to unambiguous results. It is always a good idea to filter the result of
any data analysis through your own head before you tell the world about
your amazing discovery.

Contouring a Real World Example
Naturally, contour plots always work great when you are learning about
them in a book. But real world examples are more difficult. They tend to

Contouring a Real World Example 157
throw curve balls, or—as my cricket playing Australian colleagues say—
“wrong’uns.” They are like projects around the house. You can plan on
three trips to the hardware store, no matter how simple you think the job
is going to be.

So, here is a real world example that gives you some practice applying the
techniques you have learned so far in this chapter. The data set we will use
is a publicly available NASA Goddard Satellite-based Surface Turbulent
Fluxes (GSSTF) data set (http://disc.sci.gsfc.nasa.gov/measures/docu-

mentation/Readme.GSSTF2b.pdf). I am going to show you how to contour
the latent heat flux from a data set from 1 January 2008, which is stored in
an HDF-EOS5 scientific data format (an HDF5 format). The file is named
GSSTF.2b.2008.01.01.he5. If you like, you can download the file from my
web page, although this is not necessary. The data file is quite large and I
have saved the required variables from the file in an IDL save file, which I
will describe shortly, and which is much faster to download. Here is the
URL to obtain the data file itself, if you care to use it.

http://www.idlcoyote.com/books/tg/data/GSSTF.2b.2008.01.01.he5

Figure 28: The same irregular data gridded with GridData using
an inverse weighting gridding method.

158 Chapter 5: Creating Contour Plots
The latent heat flux variable in the file is named “E” and the fill value is
named “_FillValue.” Case is important in scientific data format files. Here
is the IDL code I used to read the data, the fill value, and the dimensions of
the data from the file. It is necessary to reset the IDL session before we
start to clear away any system variable values we were using earlier in the
chapter. (This is not necessary if you are starting your IDL session with
this example. Nor is it necessary to type these commands. You can skip
this command block and find an easier way to obtain the relevant data in
the paragraph below the command block.)

IDL> .RESET

IDL> file = 'GSSTF.2b.2008.01.01.he5'

IDL> fileID = H5F_Open(file)

IDL> dataName = '/HDFEOS/GRIDS/SET1/Data Fields/E'

IDL> dataID = H5D_OPEN(fileID, dataName)

IDL> dataspaceID = H5D_GET_SPACE(dataID)

IDL> dims = H5S_GET_SIMPLE_EXTENT_DIMS(dataspaceID)

IDL> lon_dim = dims[0]

IDL> lat_dim = dims[1]

IDL> latentHeat = H5D_READ(dataID)

IDL> fill_valueID = H5A_OPEN_NAME(dataID, '_FillValue')

IDL> fill_value = H5A_READ(fill_valueID)

IDL> H5A_Close, fill_valueID

IDL> H5D_Close, dataID

If you chose not to download the data file and type the commands listed
above, you can follow along with this example by restoring the file
heat_flux.sav from among the data sets you downloaded to use in this
book. The file can be found here if you haven’t yet downloaded it.

http://www.idlcoyote.com/books/tg/data/heat_flux.sav

The variables latentHeat, fill_value, lon_dim, and lat_dim will be
restored.

IDL> Restore, File='heat_flux.sav'

IDL> Help, latentHeat, fill_value, lon_dim, lat_dim
LATENTHEAT FLOAT = Array[360, 180]
FILL_VALUE FLOAT = Array[1]
LON_DIM ULONG64 = 360
LAT_DIM ULONG64 = 180

The first curve ball you see here is that the fill_value variable is a one-ele-
ment array, instead of the scalar value you were probably expecting. This
is going to set up a classic “gotcha” situation with the Where function in

Contouring a Real World Example 159
IDL, which is what we must use to find these “missing” or fill values in the
data if we plan to exclude them from further processing.

Look what happens if you are not aware that the fill_value variable is a
one-element array.

IDL> indices = Where(latentHeat EQ fill_value, count)

IDL> Print, count
1

Compare this result to using a scalar value for the fill_value variable.

IDL> indices = Where(latentHeat EQ fill_value[0], count)

IDL> Print, count
38774

Quite a difference! While you can get away with using a one-element array
for a scalar most of the time in IDL, here is one example where you defi-
nitely cannot. When IDL evaluates the expression with the EQ operator
and two vectors, it quietly truncates the result to match the smaller of the
two vectors. The Where function is the unfortunate victim in this opera-
tion. Yikes!

So, the first thing to do is to take care of this scalar versus array problem
by making the fill value a scalar value.

IDL> fill_value = fill_value[0]

The fill value essentially identifies the “missing” data values in this file. In
order to calculate the proper levels for contouring, we need to remove
these missing values from consideration. The normal way to do this is to
set these missing values to NaNs. The code looks like this.

IDL> indices = Where(latentHeat EQ fill_value, cnt)

IDL> IF cnt GT 0 THEN latentHeat[indices] = !Values.F_NAN

Note that we didn’t have to convert the latentHeat variable to a floating
variable first, because it already is a floating point array.

Now we can find the minimum and maximum of the remaining “good”
data. Remember to set the NaN keyword.

IDL> minData = Min(latentHeat, MAX=maxData, /NaN)

IDL> Print, minData, maxData
-13.5637 583.412

Normally, latent heat flux is shown in about 8 regular divisions of about 50
watts per square meter. We could easily create 8 contour levels for this
data set, but if we start from the minimum value of the data, as we have
done previously in this chapter, the levels will not be “natural” divisions.

160 Chapter 5: Creating Contour Plots
They will have arbitrary floating point values such as -13.5637, 63.5637,
133.5637, etc. It would be better to have 8 levels that started at 0 and went
up in units of 50 (0, 50, 100, etc.), but then we have the problem that some
of the data in the file will have values less than the minimum level or
greater than the maximum level.

We could solve this problem by adding two additional “levels” or contour
colors, one for values less than 0 and one for values greater than the high-
est contour level we are interested in. In other words, we divide the data
into 10 colors or divisions, with the lowest and highest division represent-
ing the values that are outside the range of values we are particularly
interested in. We can create 10 divisions by specifying the nine levels for
the contour plot like this. (The top division, the 10th, represents all the val-
ues greater than the value of our last contour level.)

IDL> levels = [minData, IndGen(8)*50]

Next, this data is world-wide data on a one-degree grid, so we can set up
the longitude and latitude vectors we need to display the data with like
this.

IDL> lon = Scale_Vector(Findgen(lon_dim),-180,179) + 0.5

IDL> lat = Scale_Vector(Findgen(lat_dim), -90, 89) + 0.5

The extra 0.5 we add to each element is to align the left (longitude) or bot-
tom (latitude) edge of the grid cell with a whole degree. The centers of the
grid cells then fall on half-degree increments (-179.5º, -178.5º, -177.5º, etc.).
The advantage of this kind of gridding is that it avoids the non-physical
extra half degree “below” the South Pole (at -90.5º) and the small gap just
below the North Pole (at 89.5º).

We are going to display this in a window that is wider than it is tall, so we
need a Window command. But, we want this program to work in the Post-
Script device, too, so we need to protect this Window command and only
issue the command if we are on a device that supports windows.

IDL> IF (!D.Flags AND 256) NE 0 THEN $
Window, XSize=1000, YSize=700

Another way to do this is to use the cgDisplay command, which automati-
cally protects the command in a PostScript device. In fact, in a PostScript
device, it creates a “window” having an aspect ratio of 700/1000, just like
this window on the display device.

IDL> cgDisplay, 1000, 700

I would like to display the filled contour plot in a window with a white
background. Since I want to put this on top of a map projection, and map
projections don’t allow me to use a Background keyword to set the back-

Contouring a Real World Example 161
ground color, I have to erase the window with the background color, and
then use a NoErase keyword on my map projection command. I set the
map projection (a cylindrical projection, in this case) up like this.

IDL> Erase, Color=cgColor('white')

IDL> Map_Set, Position=[0.05,0.05,0.95,0.75], /NoErase

Next, we load the 16 colors for the contour plot, and display the filled con-
tour plot. We will use a Brewer color table, since Brewer colors were
designed to work well on maps. The code looks like this.

IDL> cgLoadCT, 25, /Brewer, NColors=10, Bottom=1, /
Reverse

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, latentHeat, lon, lat, /Overplot, $
/Cell_Fill, C_Colors=IndGen(10)+1, $
Levels=levels, Color=cgColor('black')

IDL> Contour, latentHeat, lon, lat, /Overplot, $
Levels=levels, Color=cgColor('black')

IDL> SetDecomposedState, currentState

Note: We are using the Cell_Fill keyword rather than the Fill keyword
in this example. This is essential on maps, generally, which tend to
create open contours, and even more so when there are open contours
as a result of missing values (NaN) in the data being contoured.

The next step is to add map annotations. I would like to display this with
box style axes, and I want the character size in a PostScript file to be
slightly smaller than the character size I use on the display. I set the char-
acter size like this.

IDL> charsize = (!D.Name EQ 'PS') ? 0.65 : 1.0

IDL> Map_Continents, Color=cgColor('tan'), /Fill

IDL> Map_Continents, Color=cgColor('black')

IDL> Map_Grid, /Box_Axes, Color=cgColor('black'), $
Charsize=charsize

Finally, we add a color bar to the plot to indicate the data values and their
associated colors. In this case, we use the discrete color bar routine cgDC-
Bar from the Coyote Library.

IDL> labels = ['< 0','0-50', '50-100', '100-150', $
'150-200', '200-250', '250-300', '300-350', $
'350-400', '>400']

IDL> cgDCBar, NColors=10, Bottom=1, Color='black', $
Position=[0.05, 0.9, 0.95, 0.94], Rotate=-45, $
Labels=labels, Charsize=charsize, $
Title='Latent Heat (watts/meter^2)'

You see the result in Figure 29.

162 Chapter 5: Creating Contour Plots
Using a Refurbished Contour Command
You will find that many of the problems identified with the traditional Con-

tour command in IDL have been corrected in the cgContour command
from the Coyote Library. The cgContour command is part of a suite of
programs, collectively called the Coyote Graphics System (which includes
cgPlot, cgPlotS, cgSurf, cgText, and cgWindow), for creating traditional
graphics output that work and look the same on all devices and in any
color decomposition state. The cgContour command takes care of many
of the details necessary to write device independent graphics programs,
works with colors in a more natural way by specifying colors directly, and
has features that are not available in the Contour command. It can easily
be displayed in the resizeable graphics window, cgWindow.

The Coyote Graphics commands produce, by default, black output on
white backgrounds. This is the opposite of IDL traditional commands, but
makes it possible to use these commands to produce (as much as possi-
ble) identical looking PostScript output. (You can return to the traditional

Figure 29: A real world example of contouring latent heat flux
from a NASA satellite data set.

Using a Refurbished Contour Command 163
color scheme of white on black by setting the Traditional keyword on the
command.)

You will notice that textual output from these commands is slightly larger
than normal. There are two reasons for this. First, larger output more
closely matches the look and feel of the corresponding PostScript output
when PostScript or TrueType fonts are used. And, second, larger output
more closely matches the look and feel of similar object graphics pro-
grams in IDL 8.

The cgContour program has been specifically written to address the fol-
lowing problems with the Contour command:

•The NLevels keyword should specify exactly N contour levels.

•There should be no “hole” in a filled contour plot.

•There should be an easy selection method for which contour levels to
label.

•It should draw graphics output in decomposed color mode, when
possible, so color tables do not become “polluted” with drawing
colors.

Here are some side-by-side comparisons to give you a sense of how
cgContour works. Notice that, by default, all contour levels are labeled.
Here is an example of the default output of Contour and cgContour. (If
you have been working the examples in this chapter, and you haven’t
already done so, you might want to start a fresh IDL session by entering
the .Reset executive command at the IDL command prompt before you
begin with these commands.)

IDL> data = cgDemoData(2)

IDL> LoadCT, 0, /Silent

IDL> Window, 0, XSize=400, YSize=400

IDL> Contour, data, Title='Normal Contour Plot', $
XTitle='X Title', YTitle='Y Title'

IDL> Window, 1, XSize=400, YSize=400

IDL> cgContour, data, Title='Coyote Contour Plot', $
XTitle='X Title', YTitle='Y Title'

You see the result in Figure 30.

Here is a similar comparison with basic filled contour plots. First, set up
the common elements.

IDL> cgLoadCT, 17, /Brewer

IDL> cgLoadCT,4, NColors=10, Bottom=1, /Brewer, /Reverse

164 Chapter 5: Creating Contour Plots
IDL> c_colors = IndGen(10) + 1

IDL> position = [0.1, 0.1, 0.9, 0.8]

Now, draw the contour plot with the Contour command. Make sure you
preserve the color model and that you draw the filled contours using the
indexed color model.

IDL> Window, 0, XSize=400, YSize=400

IDL> SetDecomposedState, 0, CurrentState=currentState

IDL> Contour, data, NLevels=10, /Fill, $
Position=position, C_Colors=c_colors

IDL> Contour, data, NLevels=10, /Overplot

IDL> SetDecomposedState, currentState

IDL> cgColorbar, Divisions=10, NColors=10, Bottom=1, $
Range=[Min(data),Max(data)], TickLen=1.0, $
Position=[0.1,0.90,0.90,0.94], Charsize=0.75

Now, draw the same filled contour plot with cgContour.

IDL> Window, 1, XSize=400, YSize=400

IDL> cgContour, data, NLevels=10, /Fill, $
Position=position, C_Colors=c_colors

IDL> cgContour, data, NLevels=10, /Overplot

IDL> cgColorbar, Divisions=10, NColors=10, Bottom=1, $
Range=[Min(data),Max(data)], TickLen=1.0, $
Position=[0.1,0.90,0.90,0.94], Charsize=0.75

Figure 30: A side-by-side comparison of the basic Contour com-
mand versus the basic cgContour command.

Using a Refurbished Contour Command 165
You see the result in Figure 31. Notice you don’t have to worry about set-
ting the color decomposition state, since the cgContour program takes
care of this automatically.

The cgContour command also has the ability to accept a color palette so
that contour colors are completely independent of the colors loaded in the
current color table. The easiest way to obtain a color palette is with the
cgLoadCT command and its RGB_Table output keyword. If this keyword
is used, colors are not loaded into the current color table, but are simply
loaded into a color palette and returned to the user. The plot on the right in
Figure 31 can be reproduced with a Standard Gamma II color table like
this.

IDL> cgLoadCT, 5, RGB_Table=pal

IDL> Window, 2, XSize=400, YSize=400

IDL> cgContour, data, NLevels=10, /Fill, $
Position=position, Palette=pal

IDL> cgContour, data, NLevels=10, /Overplot

IDL> cgColorbar, Divisions=10, NColors=10, Bottom=1, $
Range=[Min(data),Max(data)], TickLen=1.0, $
Position=[0.1,0.90,0.90,0.94], Charsize=0.75, $
Palette=pal

You see the result in Figure 32.

Figure 31: A side-by-side comparison of a filled contour plot with
the Contour command and a filled contour plot with the cgContour
command.

166 Chapter 5: Creating Contour Plots
Labeling Contour Intervals
The cgContour command also makes it easy to choose which contours to
label. If you want every other contour, or every third contour, labeled, you
simply set the new Label keyword to 2 or 3. Set it to 0 to turn contour
labeling completely off, like the default for the Contour command. The
default for cgContour is 1, which labels every contour level.

Using Colors in Contour Plots
The cgContour command makes it very easy to use colors in contour
plots. The axis and annotation color can be different from the contour col-
ors. And, these colors can be expressed as color names that are among the
200 color names recognized by cgColor. Consider these commands that
show how colors can be used in a different way than with the Contour
command.

IDL> Window, 0, XSize=400, YSize=400

IDL> cgContour, data, NLevels=10, AxisColor='blue', $
Color='red'

IDL> Window, 1, XSize=400, YSize=400

IDL> cgContour, data, NLevels=5, AxisColor='brown', $
C_Colors=['aquamarine', 'dark green', 'orange', $
'crimson', 'purple']

You see the result in Figure 33.

Figure 32: The cgContour command allows you to specify a color
table palette that keeps your contour plot colors completely inde-
pendent of the colors in the current color table.

Using a Refurbished Contour Command 167
Contour Plots in Resizeable Graphics Windows
If you want to see the contour plot by itself in a resizeable graphics win-
dow, with controls for making hardcopy output files, set the Window
keyword. The contour plot is displayed in cgWindow.

cgContour, data, NLevels=10, AxisColor='navy', $
Color='red', /Window

You see the result in Figure 34.

The cgWindow application allows you to write the graphics commands to
a PostScript file, or save the display in any of five different raster file for-
mats. If you have ImageMagick installed on your machine, you have the
option of creating raster files by converting PostScript files to raster out-
put with ImageMagick’s convert command. This results in raster files of
significantly higher quality, especially in the quality of the fonts used for
annotation. You will learn more about this topic in “Presentation Quality
by Leveraging PostScript” on page 405.

You can add as many graphics commands as you like to a cgWindow pro-
gram window. Here, for example, is how to display a filled contour plot
with contour lines overlaid, and with a color bar at the top of the plot. Sim-
ply set the Window and/or AddCmd keywords on the commands to display
the contour plot in a resizeable graphics window.

IDL> data = cgDemoData(2)

IDL> cgLoadCT, 4, /Brewer, /Reverse, NColors=12, $
Bottom=1

Figure 33: The cgContour command allows color names to be used
to specify contour colors.

168 Chapter 5: Creating Contour Plots
IDL> cgContour, data, NLevels=12, $
/Fill, C_Colors=IndGen(12)+1, $
Position=[0.1,0.1,0.9,0.75], /Window

IDL> cgContour, data, NLevels=12, $
Color='Charcoal', /Overplot, /AddCmd

IDL> cgColorbar, Divisions=12, $
Range=[Min(data), Max(data)], NColors=12, $
Bottom=1, XMinor=0, XTicklen=1.0, /AddCmd

You see the result in Figure 35.

If you would like to list the commands you have loaded into the cgWindow
command list, just set the ListCmd keyword. The commands are printed
in the console window.

IDL> cgWindow, /ListCmd

0. cgContour, p1, C_COLORS=value, FILL=value, $
 NLEVELS=value, POSITION=value
1. cgContour, p1, COLOR=value, NLEVELS=value, $
 OVERPLOT=value
2. cgColorbar, BOTTOM=value, DIVISIONS=value, $
 NCOLORS=value, RANGE=value, XMINOR=value, $
 XTICKLEN=value

Figure 34: The cgContour command can be displayed in a resize-
able graphics window, where you can save the graphics window in
five different raster file formats and as a PostScript file. This re-
sizeable graphics window is created with the Coyote Library pro-
gram cgWindow.

Using a Refurbished Contour Command 169
You can use the resizeable graphics window cgWindow just like you use
other graphics windows in IDL. Use cgSet to select a cgWindow to add
commands to, and cgDelete to delete cgWindow programs you are fin-
ished with. You can have as many cgWindow programs on the display as
you like, each with a different display, as in normal IDL graphics windows.

For example, here is how you can save the window index number of the
first cgWindow, open a second cgWindow, and display another contour
plot.

IDL> windowIndex = cgQuery(/Current)

IDL> cgWindow

IDL> cgContour, cgDemoData(18), NLevels=20, Label=2, $
Color='charcoal', /AddCmd

The cgQuery function is used to obtain information about the cgWindow
programs currently on the display. You can determine their window index
numbers, the widget identifiers of their top-level base widgets, the window
titles, or obtain their object references by setting appropriate keywords. If
the keyword Current is set, as it was here, this information is returned for
just the current cgWindow (i.e., the last one created).

To display another contour plot in the first cgWindow, type this.

Figure 35: The cgWindow program allows you to add an unlimited
number of graphics commands to the graphics window. The graph-
ics window is resizeable, and the window content can be sent to a
PostScript file or saved in any of five different raster file formats.

170 Chapter 5: Creating Contour Plots
IDL> cgSet, windowIndex

IDL> cgContour, cgDemoData(18), NLevels=20, Label=2, $
Color='dodger blue', /Window

You see the result in Figure 36.

The graphics display (the visualization) in a cgWindow can be saved to a
file, where it can be e-mailed to a colleague so he or she can view the same
visualization you see, or so you can restore it later to view it again. Simply
choose the Save Current Visualization button from the pull-down File
menu, as illustrated in Figure 36.

To delete the first cgWindow, type this.

IDL> cgDelete, windowIndex

The second cgWindow will be sent forward on your display so you can
view it easily.

You can delete all the cgWindow applications currently on the display by
setting the All keyword.

IDL> cgDelete, /All

Figure 36: You can use resizeable graphics windows in exactly the
same way you currently use normal graphics windows. Here a new
command was added to the window.

	Creating Contour Plots
	Basic Contour Plots
	Advantages of Keywords versus System Variables

	Customizing Contour Plots
	Selecting Contour Levels
	Modifying Contour Lines

	Adding Color to Contour Plots
	Using Colors in Contour Plots
	Setting the Color Decomposition State

	Creating Color Filled Contour Plots
	Choosing a Different Fill Algorithm
	Filled Contours on Map Projections

	Contouring Irregularly Sampled Data
	Gridding Irregular Data

	Contouring a Real World Example
	Using a Refurbished Contour Command
	Labeling Contour Intervals
	Using Colors in Contour Plots
	Contour Plots in Resizeable Graphics Windows

